
,.

‘Ihrbo Codes for PCS Applications

D. Divsalar and F. Pollaral

Jet propulsion Laboratory, California Institute of Technology, Pasadena,CA91109

ABSTRACT: ‘Ilrrbo codes are the most exciting and potentially important
development in coding theory in many years. They were introduced in
1993 by Berrou, Glavieux and Thitimajshima [11, and claimed to achieve
near Shannon-limit error correction performance with relatively simple
component codes and large interkwers. A required &/No of 0.7 dB was
reported for BER of 10-5 and code rate of 1L2 [1]. However, some im-
portant details that are necessary to reproduu these results were omitted.
llris paper confirms the accuracy of these claims, and presents a complete
description of an encoderldecoder pair that could be suitable for PCS ap-
plications. We describe a new simple method for trellis termination, we
anatyze the effeet of intedeaver choice on the weight distribution of the
code, and we introduce the use of uneqml rate component codes which
yields better performance. ‘Ilrrbo codes are extendd to encoders with
multiple codes and a suitable decoder structure is developd, which is
substantially different from the decoder for two-code basal encoders.

I. IN T R O D U C T IO N

Coding theorists have traditionally attacked the problem of designing
good codes by developing codes with a lot of structure which lends to
feasible de-coders, although coding themy suggests that codes chosen “at
random” should perform well if their block size is large enough. The
challenge to find practical decoders for “almost” random, large codes has
not beets seriously considered until recently. Perhaps the most exciting
and potentially important development in coding theory in reeertt years
has been the dramatic announcement of ‘~rbo-codes” by Berrou et al.
in 1993 [1]. The announced performance of these codes was so good that
the initial reaction of the coding establishment was deep skepticism, but
recentfy researchers around the world have been able to reproduce those
results [3]- [4], ‘Ile introduction of turbo-codes has opened a whole new
way of looking at the problem of constructing good codes and decodbrg
them with low complexity.

These codes are claimed to achieve near Sh,annon-limit error correc-
tion pa-formance with relatively simple component codes and large inter-
leaves. A required Eb/No of 0.7 dB was reported for BER of 10-5 [1].
However, some important details that are necessary to reproduce these
results were omitted. The purpose of this paper is to shed some tight on
the accuracy of these claims, and to present a @replete description of an
encoderldeeoder pair that could be suitable for personal communications
systems (PCS) applications, where lower rate codes can be used.

For example, in multiple-access schemes like CDMA the capacity
(maximum number of users per cell) can be expressed as C = * +1,
where q is the processing gain and Eb/No is the re@ircd signal-to-noise
ratio to achieve a d~ired bit error rate (BER) performance. For a given
BER, a smaller required Eb/NO implies a larger capacity or cell size.
Unfortunately, to reduce Eb/No it is necessary to use very complex codes
(e.g. Iargeconstraint Iengthconvolutional codes). In this paper, we design
turbo code-,? suitable for CDMA and PCS applications that can achieve
superior performance with limited complexity. For example, if a (7, 1/2)
convolutional cede is usd at BER=10-3, the capacity is C = 0.5q.
However, if two (5,1/3) punctured convolutional codes or three (4,1/3)
punctured codes are used in a turbo encoder structure, the capacity can
be increased to C = 0.8q (with 192-bits and 256-bits interleaves which

‘Ifi ~h ~n~ ~ MS ~w w an-id out at the Jet Propukion
Laboratory, California Institute of Technology, under contract with the National
Aerotrautic$ and Space Adrnirristratlorr,

./”-

correspond to 9.6 Kbps and 13 Kbps with roughly 20ms frames). Higher
capacity can be obtained with larger interleaves. Note that low rate codes
can be used for CDMA since an integer number of chips per coded symbol
is used and bandwidth is defined mainly by chip rate.

Three new contributions are reported in this paper: a new simple
method for trellis termi mation, the use of unequal rate component codes
which results in better performance, and the development of decoders for
multiple-code encoders –.- the original turbo decoder scheme operates in
serial mcde, while for multiple-code encoders we found that the decoder
for the whole turbo code based on the optimum MAP rule must operate
in paratlcl mode, and we derived the appropriate metric as illustrated in
Sec. III.

11. PARALLEL C ONCATENATION OF C O N V O L U T I O N A L

CODES

The codes considered in this paper consist of the parallel concatenation
of multiple convolutional codes with random interleavers (permutations)
at the input of each encoder. Fig. 1 illustrates a particular example that
will be used in this paper to verify the performance of these codes. The

u .—.
XII

— ~ip

J.-

l;igure 1: Example of encoder with three codes

encoder ccmtains three recursive binary convolutional encoders, with Ml,
&fz and M3 memory cells respectively. In general, the three component
encoders may not be identical, The first component encoder operates
directly on the information bit sequence u = (u,, ,.,, UN) of length N,
producing the two output sequences Xli and Xlp, The sceond component
encoder operates on a reordered sequence of information bis U2 produced
by an interleave X2 of length N, and outputs the sequence X2P. Similarly,
subsequent component encoders o~ratc on a reordered sequence of in-
formation bits Uj produced by interleavernj and output the sequence Xjp.
The interleave is a pseudo-random block scrambler defined by a permu-
tation of N elements with no repetitions: a complete block is read into
the the intcdeaver and read out in a specified (fixd) random order. The
same interleave is used repeatedly for all subsequent blocks, Figure 1
shows an example where a mte r =: l/n = 1/4 code is generated by three

I

1.!.
I component codes with Ml = M2 = MY = M = Z producing the outputs

x Ii = U, X~P = U. gb/ga, x2P = U2. gblga, ad x3P = U3. gbigo, where
the generator polynomials go and gb have octal representation (7)H,al and
(5).,,0,, respectively. Note that various code rates can be obtained by

I pro~r puncturing of xlP, X2P and XV. The design of the constituent
convolutional codes, which are not necessarily optimum convolutional
codes, is still under investigation. It was suggested in [5] that good codes

I
are obtained if g. is a primitive polynomial.
‘XYellis Termination — We use the encoder in Fig. 1 to generate a
(n(N + M), N) block code, where the M taiI bits of code 2 and code 3
are not transmitted. Since the component enccders are recursive, it is not

I sufficient to set the last M information bits to zero in order to drive the
encoder to the all zero state, i.e. to terminate the trellis. The termination

I (tail) sequence depends on the state of each component encoder after N

I bits, which makes it impossible to terminate both component encoders
with just M bits. This issue has not been resolved in previously proposed
turbo code implementations. Fortunately, the simple stratagem illustrated
in Fig. 2 is sufficient to terminate the trellis at Lhe end of the bkxk. (The
specific code shown is not important). Here the switch is in position “A”
for the first N clock cycles and is in position “B” for M additional cycles,
which will flush the encoders with zeros. The decoder does not assume
knowledge of the M tail bits. The same termination method will be usd
for all encoders.

Figure 2: Trellis Termination

Weight Distribution — In order to estimate the performance of
a code it is necessary to have information abut its minimum distance,
weight distribution, or actual code g~metry, depending on the accuracy
required for the bounds or approximations. The challenge is in finding
the pairing of codewords from each individual encoder, induced by a
particular set of interleavera. Intuitively, we would like to avoid joining
low-weight codewords from one encoder with low-weight words from
the other encoders. In the example of Fig, 1, the component codes have
minimum distances 5,2 and 2. This will produce a worst-case minimum
distance of 9 for the overall code. Note that this would be tmavoid-
able if the encoders were not recursive since, in this case, the minimum
weight word for all three encoders is generated by the input sequence
u = (00... 0000100 . . . 000) with a single “l”, which will appear again
in the other encoders, for any choice of interlcavers. This motivates the
use of recursive encoders, where the key ingredient is the rearrsiveness
and not the fact that the encoders are systematic. For our example, the
input sequence u = (00... 00100100 . . . 000) generates a low weight
codeword with weight 6, for the first encoder. If the interleaves do not
“break” this input pattern, the resulting codewords weight will be 14. In
generrd weight-2 sequences with 2 + 3t zeros separating the 1‘s would
result in a total weight of 14 + 61 if there were no permutations.

With permutations before the second and third encoders, a weight-
2 sequence with its 1‘s separated by 2 + 3[1 zeros will be permuted
into two other weight-2 sequences with 1‘s separated by 2 -!- 31, zeros,
i = 2,3, where each rI is defined as a multiple of 1/3. If any t{ is not
an integer, the corresponding encoded output wiIl have a high weight
because then the convolutional code output is non-terminating (until the
end of the block). If all rl’s are integers, the total encoded weight will be

14+2 ~ ;~=l ~i. Thus, one of the considerations in designing the interleave
is to avoid integer triplets (tl, fZ, 13) that are simultaneously small in all
three components. In fact, it would be nice to design an intedeaver to
guarantee that the smallest value of ~~=1 /j (for integer /i) grows with the
block sire N.

For comparison we consider the same encoder structure in Fig. 1, ex-
cept with the roles of g. and gb reversed. Now the minimum distances
of the three component codes are 5, 3, and 3, producing an overall min-
imum distance of 11 for the total code without any permutations. This
is apparently a better code, but it turns out to be inferior as a turbo code.
This paradox is explained by again considering the critical weight-2 data
scquenccs. For this code, weight-2 sequences with 1 + 211 zeros sepa-
rating the. two 1‘s produce self-terminating output and hence low-weight
encoded words. In the turbo encoder, such sequences will be permuted
to have separations 1 + 2ti, i = 2, 3, for the second and third encoders,
where now each ~i is defined as a multiple of 1/2. But now the total
encoded weight for integer triplets (t], 12, t3) is 11 + ~~=1 (i. Notice how
this weight grows only half as fast with ~~=1 Ii as the previously calcu-
lated weight for the original code. If ~~=1 ti can be made to grow with
block size by proper choicx of interleave, then clearly it is important to
choose component codes that cause the overall weight to grow as fast as
possible with the individual separations Ii. This consideration outweighs
the criterion of selecting component codes that would produce the highest
minimum distance if unpcrmutcd.

There are also many weight-n, n = 3,4, 5, data sequences hat
produce self-terminating output and hence low encoded weight. However,
as argued below, these sequences are much more likely to be broken up
by the random intedeavers than the weight-2 sequences and are therefore
likely to produce non-terminating output from at least one of the encoders,
Thus, turbo code structures, which would have low minimum distances
if unpemmted, can still perform well if the low-weight codewords of the
component codes are produced by input sequences with weight higher
than two.

Weight Distribution with Random Interleaves — NO W

we briefly examine the issue of whether one or more random interleaves
can avoid matching small separations between the 1‘s of a weight-2 data
sequence with equalIy small separations between the 1‘s of its permuted
version(s). Consider for example a particular weight-2 data sequence
(... 001001000.. .) which corresponds to a low weight codeword in each
of the encoders of Fig. 1. If we randomly select an interleaver of size
N, the probability that this sequence will be permuted into another se-
quence of the same form is roughly 2/N (assuming that N is large,
and ignoring minor edge effects). The probability that such an unfor-
tunate pairing happens for at least one possible position of the original
sequence (... 001001000 ...) within the block size of N, is approxi-
mately 1 -- (1 — 2/N)N - 1 - e-z, This implies that the minimum
distance of a two-code turbo code constructed with a random permuta-
tion is no~ likely to be much higher than the encoded weight of such
an unpcrrnuttxt weight-2 data sequence, e.g. 14 for the code in Fig. 1,
(For the worst case permutations, the dmin of the code is still 9, but these
permutations are highly unlikely if chosen randomly). By contrast, if
we use three codes and two different interleaves, the probability that
a particular sequence (... 001001000...) will be reproduced by both
intedeavers is only (2/N)2. Now the probability of finding such an un-
fortunate data sequence somewhere within the block of size N is roughly
1 -[1 - (2/N)2]N % 4/N. Thus it is probable that a three-code turbo
code using two random interleaves will see an increase in its minimum
distance beyond the encoded weight of an unpermuted weight-2 data
sextuence. This argument can be extended to account for other weight-
2 data sequences which may also produce low weight codewords, e.g.
(., . 00100 (000) ’1000. . .), for [he code in Fig. 1, For compmison, let

,.

us consider a weight-3 data sequence such as (.. . 0011100 ...) which
for our example corresponds to the minimum distance of the code (using
no permutations). The probability hat this s~uence is reproduced with
one random interleave is roughly 6/N2, md the probability that some
sequence of the form (.. . 0011100. . .) is paired with another of the same
form is 1 – (1 – 6/N2)N = 6/N. Thus for large block sizes, the bad
weight-3 data sequences have a small probability of being matched with
bad weight-3 permuted data sequences, even in a two-code system.

For a turbo code using q codes and q – 1 random interleaves this
probability is even smaller, 1 – [1 – (6/N2)q-l]N * I(b q-z. ThisN ~)
implies that the minimum distance codeword of the turbo code in Fig. 1
is more likely to result from a weight-2 data sequence of the form
(.. .001001000 ...) than from the weight-3 sequence (.. .0011100 ...)
that produces the minimum distance in the unpermuted version of the
same code. Higher weight sequences have even smaller probability of
reproducing themselves after being passed through a random interleave.

For a turbo code using q codes and q – 1 interleaves, the probability
that a weight-n data sequence will be reproduced somewhere within the
block by all q -1 permutations is of the form 1- [1 - (/l/Nn-’)q-’]N,
where #l is a number that depends on the weight-n data sequence but does
not increase with block size N. For large N, this probability y is propor-
tional to (1 /N)’’$’-q,q, which falls off rapidly with N, when n and q are
greater than two. Furthermore, the symmetry of this expression indicates
that increasing either the weight of the data sequence n or the number of
codes q has roughly the same effect on lowering this probability.

In summary, from the above arguments we conclude that weight-2 data
sequences are an important factor in the design of the component codes,
and that higher weight have dwreasing importance. Also, increasing the
number of codes may result in better turbo codes. More accurate results
and derivations are discussed in [6].

‘fIre minimum distance is not the most important quantity of the turbo
code, except for its asymptotic performance, at very high Eb/No. At mod-
erate SNRS, the weight distribution for the first several possible weights
is necessary to compute the code performance. Estimating the complete
weight distribution of these codes for large N and fixed intedeavers is still
an open problem. However, it is possible to estimate the weight distribu-
tion for large N for random interleaves by using probabilistic arguments.
(Sw [4] for further considerations on the weight distribution).
Interleaver Design — Interleaves should be capable of spread-
ing low-weight input sequences so that the resulting codeword has high
weight. Block interleaves, defined by a matrix with v, rows and UC
columns such that N = u, x v., may fail to spread certain sequences. For
example, the weight 4 sequence shown in Fig. 3 cannot be broken by a
block interleave. In order to break such sequences random intedeavers
are desirable. (A method for the design of interleaves is discussed in [3]).
Block interleavers are effective if the low-weight sequence is confined to
a row. If low-weight sequences (which can be regarded as the combina-
tion of lower weight sequences) are confined to several consecutive rows,
then the v. columns of the interleave should be sent in a specified order
to spread as much as possible the low-weight sequence. A method for
rrmrdenng the columns is given in [8]. This method guarantees that for
any number of columns UC = aq + r, (r S a – 1), the minimum sepa-
ration between data entries is q -1, where a is the number of cohrmns
affected by a burst. However, as can be observed in the example in Fig. 3,
the sequence 1001 will still appear at the input of the encoders for any
possible column permutation. Only if we permute the rows of the inter-
leave in addition to its columns it is possible to break the low-weight
sequences. The method in [8] can be used again for the. permutation of
rows, Appropriate selection of of a, and q for rows and columns de-
pends on the particular set of codes used and on the specific low-weight
sequences that we would like to break. We have also designed random

permutations (interleaves) by generating random integers i, 1 s i s N,
without replacement. We. define a “S-random” permutation as follows:
each randomly selected integer is compared to S previously selected inte-
gers. If the current selection is equal to any S previous selections within
a distance of +S, then the current selection is rejected. This process is
repeated until all N integers are selected. While the searching time in-
creases with S, we observed that choosing S < @ usually produces
a solution in reasonable time. (For S = 1 we have a purely random
interleavcr).

In the simulations we used S = 11 for N = 256 and S = 31 for
N = 4096.

The advantage of using three or more constituent codes is that the
corresponding twcj or more interleaves have a better chance to break se-
quences that were not taken care by another intedeaver. The disadvanbge
is that, for an overall desired code rate, each code must be punctured more,
resulting in weaker constituent codes. In our experiments, we have used
randomly selected intedeavers and interleaves based on the row-column
permutation described above. In general, randomly selected permuta-

--[.q 1
0 0 . , . 0 0 0
0 . . . , . . 0WRITE, .,,,

& t:(+::: ij. . 0

L
.
00
0 0 0 . . . 0 0 J

Figure 3: Example where a block interleave fails to “break” the
input sequence.

tions are good for low SNR operation (e.g., PCS applications requiring
Pb = 10-3) where the overall weight distribution of the code is more
important than the minimum distance

III. T URBO D ECODING C O N F I G U R A T I O N
The turbo demding configuration proposed in [1] for two cedes is shown
schematically in Fig. 4. This configuration operates in serial mode, i.e.
“De~ 1” prmses data before “flcc2” starts its operation, and SO on.
An obvious extension of this configuration to three codes is shown in

6B=%!!9---4!””””
Figure 4: Decoding structure for two codes.

Fig. 5(a), which also operates in serial mode. But, with more than two
codes, there are other possible configurations, as that shown in Fig. S(b)
where ‘Wee 1” communicates with the other decoders, but these decoders
do not exchange information among each other. This “Master& Slave”
configuration operates in a mixed serial-parallel mode, since all other
decoders except the first operate in parallel. Another possibility, shown in
Fig. 5(c) is that all decoders operate in parallel at any given time. Note that
self loops are not allowed in these structures since they cause degradation
or divergence in the decoding process (positive feedback). We are not
considering other possible hybrid configurations. Which configuration
performs better? Chrr selection of the best configuration and its associated
decoding rule is based on a detailed analysis of the minimum bit error
decoding rule (MAP algorithm) as described below.
Turbo Decoding for Multiple Codes — Let Uk be a binary
random variable taking values in {O, 1), representing the sequence of
information bits u = (u,,.,., UN). The MAP algorithm [7] provides the
log likelihood ratio Lk given the received symbols y:

P(UI =: 1 Iy)
L1 = l o g ——.-.—.

P(u~ =: Oly) (1)

—

. .

● O *

(a) SERL4L

-“”

(c) PARALLEL

1 I 1 I b
TIME

Figure 5: Different decoding structures for three codes.

= log ‘U.Mi~l ‘(YIU) l’lj+~ ‘(uj) “(U’ = 1) (2)
XU.w=O ‘(YIU) llJ# ‘(uj) + 10g P(U, = O)

For efficient computation of eq.(2) when the a-priori probabilities P(uj)
are non-uniform, the modified MAP algorithm in [2] is simpler to use
than the version considered in [1]. ‘I%erefore, in this paper we use the
modified MAP afgorithm of [2] as we did in [4].

The channel model is shown in Fig. 6 where the n{i’s and the npk’s
are i.i.d. zero mean Gaussian random variables with unit variance, and
p = ~= is the signal-to-noise ratio. (The same model is used

for each encoder). To explain the basic decoding concept we restrict

Figure 6: Channel model.

ourselves to three codes, but extension to several codes is straightforward,
In order to simplify the notation, consider the combination of permuter
and encoder as a block code with input u and outputs xi, i = 1, 2, 3 and
the comasponding received sequences yf

, i = 1,2,3. The optimum MAP
decision metric on each bit is (for data with uniform probabilities)

~k = log L“k.1 ~@llu)pw21u)PCfjl”)
Z.L”14 P(Y11U)P(Y21U)P(Y31U) ‘

(3)

but in practice we cannot compute eq.(3) for large N. Suppose that we
evaluate P(yi Iu), i = 2,3, in eq.(3) using Bayes’ rule and using the
following approximation

(4)

Note that P(ulyi) is not separable in general A reasonable criterion for
this approximation is to choose ~fl=l ~i(u~) such that it minimizes the
Kullback distance or free. energy [9, 10]. Define

h
F1(UL) = —

] +&k ‘

where Ui e {O, 1). Then the Kullback distance is given by

(5)

Such minimization involves forward and backward recursions analogous
to the MAP decoding algorithm! Therefore, if such an approximation
can be obtained, we can use it in eq,(3) for i = 2 and i = 3 (by Bayes’
rule) to complete the algorithm. Now, instead of using eq. (6) to obtain
{~i) or equivalently (~i), we use (4) and (5) for i =2, 3 (by Bayes’ rule)
to express (3) as

where

We can use (4) and (5) again, but this time for i = 1,3, to express (3) as

and similarly
Lt = j(y3,~1,~2,k) + ilk +~n (lo)

A solution to eqs. 7,9, and 10 is

il& = j(Y1. fi2!fi3, k); iQk = j(y2, iq, t3, k); ~3A = f(y3, tl, i2, k)

(11)
provided that a solution does indeed exist. fork = 1,2, ,.., N. The final
decision is then based on

which is passed through a hard-limiter with zero threshold. We attempted

Y2 I

Figure 7: Structure of block decoder 2

to solve tbe nonlinear equations in (11) for fil, Lz, and fi3 by using the
iterative procedure.

fork =1,2, ..., N, iterating on m. Similar recursions hold for ~$) and
‘m) should be equal to one, but we noticed experimentallyi$’). The. gain CYi

that better convergence can be obtained by optimizing this gain for each
iteration starting from a value slightly less than one, and increasing toward

one with the iterations, as often done in simulat~ ~nea~ng me~ods. We
start the recursion with the initial condition ~p) = L$O) = L\o) = 0.
For the computation of j(”) we use tie modifi~ MAp algori~m with
permuters (direct and inverse) where neded, as shown in Fig. 7 for block
decoder 2. The MAP algorithm always starts and ends at the all-zero
state since we used perkt termination. Similar stnrctures apply for
block decoder 1 (ZI = I, identity), and block decoder 3. The overall
decoder is composed of block decoders connected as in Fig. 5(c), which
can be implemented as a pipdine or by feedback.
Multiple Code Algorithm Applied to TWO Codes. — For
turbo codes with only two constituent codes, eq (13) reduce to

‘m) and C&)where, for each iteration, u 1 can be optimized (simulated an-
neating) or set to 1 for simplicity. The decoding configuration for two
codes, according to the previous section, is shown in Fig. 8. In this spe-

● 0 0

dWW.
Figure 8: Parallel structure for two codes.

CM case, since the two paths in Fig. 8 are disjoint, the decoder stnrcture
reduces to that of Fig. 4, i.e. to the serirrf mode.

If we optimize a~) and a?), our method for two ~es is similar to
the dccodhsg method proposed in [1], which requires estimates of the
variances of ill and ZX for each iteration in presence of errors. In the
method proposed in [2] the received “systematic” observation was sub-
tracted from LM, which results in performance degradation. In [3] the
method proposed in [2] was used but the received “systematic” observa-
tion was interleaved and provided to decoder 2. In [4], we argued that
there is no need to interleave the received “systematic” observation and
provide it to decoder 2, since LM does this job. It seems that our proposed
method with a~) and af’) equal to 1 is tie simplwt ad achiev~ the same
performance reported in [3] for rate 1/2 codes.
Terminated Paral lel Convolutional Codes as Block
Codes — Consider the combination of permuter and encoder as a
linear block code. Define P~ as the parity matrix of the terminated convo-
lutional code i. Then the overall generator matrix for three parallel codes
is

G = [I PI z2P2 7r3P3]

where Xl are the permutations (interleaves). In order to maximize the
minimum distance of thecodegiven by G we should maxirnizethe number
of linearly independent columns of the corresponding parity check matrix
H. ‘Ilis suggests that the design of Pi (code) and m (permutation) are
closely related and it does not necessarily follow that optimum component
codes (maximum d~l”) yield optimum parallel concatenated codes. For
very small N we used this concept to design jointly the pcrmtrter and the
component convolutional codes.

IV. PE R F O R M A N C E

Two Codes — The performance obtained by turbo dceoding the
code with two constituent codes (], gb/gd); where ga = (37)~,0J and
gb = (21)0c1~J, and with random permutations of lengths N = 4096 and

2No@ mat ~ ~n)wnents of the ~’s corresponding to the tail bits am Set to
zero for atl iterations.

N = 16384 is compared in Fig. 9 to the capacitY of a binary-input Gaus-
sian channel for rate r = 1/4. The best performance curve in Fig
approximately 0.7 dB from the Shannon limit at BER= 10 -4.

,..1

r‘“”-”d~RATE = 114

-1.s -1.0

Figure 9: Turbo

A

-0.5 0.0 0.5
E@o, dB

codes performance, r = 1/4

> is

Unequal Rate 13ncoders — We now extend the results to encoders
with urwqual rates with two K = 5 constituent codes (1, gb/ga, gC/ga)
and (g~/go), where ga = (37)o.,aI, gb = (33)ti,dI and gc = (25)w,dI.
This structure improves the pcrformanct of the overall, rate 1/4, code, as
shown in Fig.9. This improvement is due to the fact that we can avoid
using the interleaved infc)rmation data at the second encoder and that the
rate of the first code is lower than that of the second code. For PCS ap-
plications, short interleaves should be used, since the vocoder frame is
usually 20ms. Therefore we seIocted 192 and 256 bits interleaves as an
example., corresponding to 9.6 and 13 Kbps. (Note that this small dif-
ference of intedeaver size does not affect significantly the performance).
The performance of codes with short interleave is shown in Fig. 10 for the
K = 5 codes described above for random permutation and row-column
permutation with a = 2 for rows and a = 4 for COhMIUM.

Three Codes –- The. performance of a three-code turbo code with
random interleaves is shown in Fig. 11 for N = 4096. The three recursive
codes shown in Fig. 1 where used for K = 3. Three recursive codes with
g. = (13)~td and &?b =’ (11)~~,~1 were usrd for K = 4. Note that the
non-systematic version of this encoder is catastrophic, but the recursive
systematic version is non-catastrophic. We found that this K = 4 code
has better performance than several others.

Although it was sugg,csted [5] that g. be a primitive polynomial, we
found several counterexamples that show better performance, e.g. g. for
K = 5 proposed in [1] is not primitive.

In }’ig. 11 , the performance of the K = 4 code was improved by
going to 30 iterations and using a S-random interleave with S = 31. For
shortel bl~ks (192 and 256), the results are shown in Fig, 10 where it

?

can be observed that approximately 1 dB SNR is required for BER=10-3,
which implies a CDMA capacity C = 0.8q We have noticed that the
slope of the BER curve changes around BER=10-5 (flattening effect) if
the interleaver is not designed properly tO maximize d~i. or is chosen at
random.

10

10’

K
m

10”

10”

10’

\
r=l14
m.20

\\

Three K=3 Codes
Random Interieaver, N= 192

/

Nix
sianaom Imeneaver,

K=15, r=l14
Sonvolsstional Code
(Reference)

:.~rrWes

and (a~2, *4)
Interteaver, N=256

+\

Two K=5 @ales

lrr%!%&@=256
/ ii

N=l W

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 B 2.0
E#Jo, dB

Figure 10 Performance with short block sizes,

V. C ONCLUSIONS

We have shown how turbo codes and decoders can be used to improve
the coding gain for PCS applications. These are just preliminary results
that require extensive further analysis. In particular, we need to improve
our understanding of the influence of the interleave choice on the code
performance, to explore the sensitivity of the decoder performance to the
precision with which we cariestimate Eb/No.

An interesting theoretical question is to determine “how random” these
codes can be so as to draw conclusions on their performance based on
comparison with random coding bounds. In [4] we obtained the complete
weight distribution of a turbo code, calculated the upper bound on BER
and compared it with maximum-likelihood (ML) decoding. Those results
showed that the performance of turbo decoding is close to ML decoding
and to optimum MAP decoding. However, the approximation used in
eq.(4) implies that turbo decoding is only close to but not equal to MAP
decoding.

VI. A C K N O W L E D G M E N T S

The authors are grateful to S. Dolinar and R.J. McEliece for their helpful
comments.

R E F E R E N C E S

[1] C. Bermst, A. Glavieux, and P. ThitirnajshiW “Near Shannon Litnit Error-
Cm-r-ecting Coding: Tlrrbo Corte~Y Proc. 1993 IEEE International Conference
on Communications, pp. 1064-1070.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

k\b
10” ——..

N=4096
Cade Ftate=l14

K= IS, r=l/4
Gallleo Coda

10”

a
w

Thraa K=3 Codas
m m =20

\/
Three X=4 Codes

mn30

ThrmM=:o=4

——--
-02 -0.1 0.0 0.1 02 0.3 0.4 0.5

E@lo, dEf

Figure 11: Three-code perfom.ante

J. Hagenauer and P. Robertson, “Iterative (Turbo) decoding of systematic
convolutional codes with the MAP and SOVA rrtgonthms”, Pmt. of dre fTG
conference “Source and channel coding”, Oct. 1994, Frankfurt.

P. Rotmt.son, “Illuminating the structure of code and decoder of par-de] con-
catenated recursive systematic (Tsu-ba) codes”, Procdings GLOBECOM
’94, Dec. 1994, pp.1298-1303.
D. Divsafw and F. Pollara, Turbo Codes for Deep-Space Communications”,
JPL TDA Progress Report 42-120, Feb. 15, 1995.

G. Batrail, C. Berrou and A. GIavieux, “Pseudo-random recursive con.
volutionsd coding for near-capacity performance.”, Conmr. ‘fbeory Mini-
conference, GLOB13COM ’93, Dec. 1993.

D. Divsalar, S. Dotinar and F. Polk-a, ‘Weight distribution of multiple turbo
codes”, JPL TDA Progress Report, (In preparation).

L. R. Baht, J. Cocke, F. Jelinek, and J. Raviv, “Optirnaf Decoding of Lh-
ear Codes for Minimizing Symbol Error Rate,” lEEE Trans. [njcrrrrt. Theory,
VOL 11-20 (1974), pp. 284-287.

E. Dut,scombe and F.C. Pilxr, ” Optimal interleaving scheme for convolutional
codes”, Electronic Letters, 26 Oct. 1989, Vol. 25, No. 22, pp. 1517-1518.

M. Moher, “Decoding via Cross-entropy Minimization”, Proceedings
GLOBECOM ’93, Dec. 1993, p.809-813. --

[10] G. Bdtail and R. Sfez, “Sutroptimum Decoding using the Kutlback Princi-
ple”, 1.ecture Notes in Computer Science, Vol. 313, pp. 93-101, 1988.

